


No matter what values we assign to f at the znk, subject to the
prelabel requirements, there is exactly one point e, in the interior | 4
of Ty such that F(ui) =0, ({ =1,2) . Since F 1is linear on 9>

the chord between a, and a, is the preimage F-l(O) in o If 5

1 S
a2 is the unique simplex which shares T, with %y and if the re-
maining vertex of o, is prelabeled by X, Y, or W, then there are
exactly two completely prelabeled facets, T, and Ty of az . As
before, there is exactly one point @y in the interior of T3 such

that the chord between @, and ., is the preimage F-I(O) in o

3 -

By a careful choice of prelabels for certain vertices, we form
a sequence of completely prelabeled facets as indicated in Figures 8-12. : 1
This choice of prelabeling will result in a portion of F-I(O) which
retrogresses once. We call this portion cycle i . Our construction
enables us to piece together such portions, resulting in a path which
retrogresses infinitely many times. We now describe this construction

in detail.

The infinitely retrogressing path will begin at

p(0) = (pl(O). pz(O)), with pl(O) in the interior of the square

2

{(x,y) e R°: 0<x<1,0<y <1}, and pz(O)-l. Cycle i 1is one

cycle of the repeating pattern of the path. It is shown in detail in
Figures 8-12. Figure 2 gives a schematic diagram of cycle 1 .
Figure 3 indicates that portion of Inzx (0,1] wused in the construction

of cycle i . The successive stages of cycle i occur as follows:

1. The cycle begins at t31(tj - 2-1) . The path passes down
through block B(i,1) . Figure 8.




2. The path dips down into block B(i,2) and returns to

t31+1 . It has retrogressed at ti . Figure 9.
3. The path dips up into block B(i,1) and returns to
t3i+1 . Figure 10.
4. The path passes down through block B(i,3) . Figure 1l.
5. The path passes down through block B(i,4) . At this point,
we are at t3(1+1), ready to begin cycle i + 1 . Figure 12.
The cycles are indexed by i =0, 1, 2, ... . Cycle i + 1 has
the properties that
1. the projection of B(i+l,1) into ]sz {1} 4is contained in
the interior of the projection of B(i,l) into ]sz {1},
and
2. the Y and W prelabels are interchanged in their positions
relative to the X prelabels.
The next sections deal with the construction of a function
2 2 ®

f: R+ R which satisfies the prelabel requirements on {zn}n-l

This function will automatically yield an infinitely retrogressing path
which passes through an infinite sequence of distinct completely £f-labeled
facets (Tm} . The path intersects each Tn at a unique point in the
interior of Ty * Consecutive T, are adjacent. This implies that the

path is one path component of F-l(O) N IRZ x (0,1] .

Preliminary constructions

Let
X = {zn * z  has prelabel X}
Y = {zn iz has prelabel Y}

W = {zn N has prelabel W} .

e — —— .. —




Construction of f

2
Recall that the objective is to create a function of class c”

with a unique zero at z I shall construct fz in two stages.

0"
First, I shall define a function g,y ¢ ]R1-> lRl of class C  satis-
fying

1. gz(w(zn)) <0 for z € W

U

2. gz(w(zn)) >0 for z € Xuy

3. gz(w(z)) <0 whenever gl(n(z)) =0, 2 é n-l(O) !
Then I shall define a function h @ ]R2-> IRl of class C satisfying

1. h(zn) =0, n>0

2. h(2) <0  for zem (0, z#z.
By defining fz(z) = gz(n(z)) + h(z), we shall have the desired function
£(z) = (£,(2), £,(2)) .

’ !
For L corresponding to z_ € XUy , let Jn = (nn - en/6,

T + en/6). For each pair J ., Jn of two neighboring Jn intervals,

i I e
with Jn lying to the left of Jn , and no other Jn intervals lying
1 2
in between them, we let Kn = (un + €, /3, “n - [3) « XIf Jn is
1 B | 2 72 r
the left-most Jn interval, and if Jn is the right-most Jn interval, let
s
Kn = (nn i 13, L 8 /3) . 1f there is some Jn for which no
s b r s s P
Jn interval lies between Jn and the origin, then let Kn = (nn +e /3,0)
P P P P
or Kn = (0, P /3), depending on whether Jn lies to the left

P P
or right of the origin respectively. Note that each z € W lies out-

side Kns or lies in some K_, ny # n .
Let En = ¢(Jn) . Let y = ¢(Km) if m# n, . Write Kns = (a,b).
Let ¢ = 1 - ¢((2a-b, 2b-a)) for m = ng - Choose Bn > 0 so that

(n) -n
snlgn I <2
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and choose L > 0 so that

(m) -m
vmllpm I <2 ~

Define

8,(x) = E B, E,(0) - E Vg Vg (X) -

The first sum is over those indices for which we have defined a Jn
interval. The second sum is over those indices for which we have
defined a Km interval. See Figure 7.

The proof that 8,y is of class C follows exactly as that
for 8 - One caution is that we used the fact that diam(In) <1 .
Here, either there are infinitely many Km on both sides of the origin,
whence diam(Km) <1 for m sufficiently large, or there are finitely
many Km’ m # ng, on one side of the origin. In this latter case, the
conditions of the lemma are still satisfied since ¢(Kn ) 1is of class

@ P
c .

Claim 4: For z ¢ w—l(O), g,(m(2)) = 0 implies g,(m(z)) <0 .

Proof: Fix 2z, z é ﬂ-l(O) . Then gl(n(z)) = 0 implies w(z) é In
for any n corresponding to z € X¥UY . Either =(z) 1lies outside
Kn , or m(z) 1lies in some Km’ m # n, - In either case, gz(n(z))

s

e wm(n(z)) < 0 . Note that supp(wns) = {x:xg¢ Kns} X /i
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If we were to define f(z) = (gl(W(z)), 82("(2))). then z € X
implies f(zn) € X, z € Y implies f(zn) er, z € W implies
f(zn) € W, and the prelabel requirements would be satisfied. But all
ze n_l(O) satisfy gl(n(z)) - %q (n(z)) = 0 . In order that £ have
a unique zero at z,, we modify this definition by the function h

described above.

Construction of h

With no loss of generality, the constructions in this section will
be with respect to the coordinate axes L and A Thus, z + (0,0) as
n + «, and no zn, n > 1, lies on the L' axis . Note that the origin is

the only cluster point of {z ¥ . . We will write z = (x,y) eL' x L .

n n=1

Let U, = @9 ol v g Y a0y

3

For each j, there is a Gj > 0 such that no z lies in

joi %8 3

. g i s
5 Uj x ( Gj’aj) Vj x ( 55'53) ’
é -J - = -
5 and 6j <2° . Let Tj ¢(Uj) + ¢(Vj) . Let °j ¢ (( Gj/Z, SjIZ)) i
i Choose AJ > 0 so that
1 1) (1 =] X
l Aj 2 I ch <2
¥ Define h by
'i
f h(z) = h((6y)) = ] =8,7,(x) o,(y) .
|
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Since each z 1lies in at most two rectangles of the form

Uj x (-Gj.dj) or Vj x (-61.61) ’

the sum is well-defined. Note that for each fixed 2z # (C,0), there
is some open neighborhood of 2z which intersects at most three

rectangles of the form

UJ x (-§,,6.) or VvV, x (-8 )

1% 3 38

3

with consecutive indices. So for some n ,

n+2
h(z) = ] - 8y

j=n

(x) o,(y) .

3 3

Note that h((0,0)) =0 .

Claim 5: h 1is continuous.

Proof: We need only establish continuity at (0,0) .

n+2
|n(z)| = IJZn - 81 0, )]

T abed o,

< Alr o

~ g h ]
+2

< nz A 'r(j)l 15()y
jon h| ]
nt+2

< Z 2-5
j=n

As z + (0,0), n+ ®, and h{(z) > 0 . 1/}
14
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Claim 6: h is of class C .

n+2

Proof: 3%&!1 -] - Ajtgl)(x) oj(y) for z # (0,0) . This sum
=n

goes to zero as z *+ (0,0) . Applying the lemma to the definition
of the partial derivative gives 3h 3: 9 exists and equals O .

Similarly, 3%551 +0 as z -+ (0,0) . Since

3h((0,0)) h((0,y)) - h((0,0))
3y = lim y -
y>0

both first order partial derivatives are continuous. Thus, h 1is of
class C1 .

Assuming h 1is of class Cr, we use the lemma to show that all
partial derivatives of order r + 1 exist at (0,0) and equal 0 .
This, combined with the fact that all partial derivatives of order r + 1
approach 0 as =z »+ (0,0), implies that h 1is of class Cr+1 . By |
induction, h is of class C . /A

The function h was-needed to perturb the values of gz(w(z))

for all z e 1-1(0). z # z; - So far, we have only done this for a
-1

bounded portion of 7 “(0) . Recall that - ¢(Ul) + ¢(V1) .
Define ?1 by
b ’ T, (%) for |x] < 3/8
tl(x) -
l 1 otherwise .

Replace T by ?l in the definition of h . Now, h(z) < 0 for

all z e n-l(O). z ¢ 2gs and, replacing 61 with a smaller value as

NERESy—

needed, h(zn) =0,n>0.
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Degree of f at z,

From our construction of f, we note that f does not map to
any point in the set {(x,y) e le : x=0,y >0} . We can, therefore,

define arbitrarily small perturbations of £ by

£.(2) = £(2) - (0,e), € >0,

such that fe has no zero. The Eaves-Saigal algorithm still computes
-1

apath in F_ (0) N R?x (0,1] ; F_ being derived from f_. But this

path will be greatly different from the one we constructed, even for

small € > 0 . In particular, it cannot be converging.

The reason for this unstable behavior lies in the fact that the
degree of f‘ at  z is zero (Artin and Braun [l]). We easily compute
this degree by noting that f is symmetric with respect to the line L .
Thus, the image of any circle about z, does not fully wrap around the

origin. This leads us to ask: Does there exist a function f satisfying i

1. f 4s of class C .

2. f has a unique zero at zy » &

3. F-I(O) N R"™ x (0,1] has an infinitely retrogressing con-

verging path component, and

4. the degree of f at is non-zero?

%
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FIGURE 1

Retrogression of path p(s) at ¢t
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FIGURE 2
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FIGURE 4
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FIGURE 5
Construction of ¢
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FIGURE 6

Illustration of the construction of 81
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FIGURE 7
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Block B(i,1)
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FIGURE 9

Block B(i,2)
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FIGURE 11
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